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Abstract The Schwarzschild solution has played a fundamental conceptual role in
general relativity, and beyond, for instance, regarding event horizons, spacetime sin-
gularities and aspects of quantum field theory in curved spacetimes. However, one
still encounters the existence of misconceptions and a certain ambiguity inherent in
the Schwarzschild solution in the literature. By taking into account the point of view
of an observer in the interior of the event horizon, one verifies that new conceptual
difficulties arise. In this work, besides providing a very brief pedagogical review,
we further analyze the interior Schwarzschild black hole solution. Firstly, by deduc-
ing the interior metric by considering time-dependent metric coefficients, the interior
region is analyzed without the prejudices inherited from the exterior geometry. We
also pay close attention to several respective cosmological interpretations, and briefly
address some of the difficulties associated to spacetime singularities. Secondly, we
deduce the conserved quantities of null and timelike geodesics, and discuss several
particular cases in some detail. Thirdly, we examine the Eddington–Finkelstein and
Kruskal coordinates directly from the interior solution. In concluding, it is important
to emphasize that the interior structure of realistic black holes has not been satisfac-
torily determined, and is still open to considerable debate.
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1 Introduction

The Schwarzschild solution has proved to play a fundamental importance in con-
ceptual discussions of general relativity, and beyond, for instance, regarding event
horizons, spacetime singularities and aspects of quantum field theory in curved space-
times. It has also been important providing the first insights regarding the phenom-
enon of gravitational collapse [1] and inspired the construction of theoretical models
of relativistic stars [2–4]. Before the mid-1960s, the object now known as a black
hole, was referred to as a collapsed star [5] or as a frozen star [6], and it was only in
1965 that marked an era of intensive research into black hole physics. Relatively to
the issue of experimental tests of the Schwarzschild solution, the exterior geometry
has been extremely successful in explaining, for instance, the precession of Mer-
cury’s perihelion, and the phenomenon of the bending of light, where the exterior
Schwarzschild gravitational field acts as a gravitational lens.

Despite of its important role, one still encounters, in the literature, the existence
of misconceptions and a certain ambiguity inherent in the Schwarzschild solution.
For instance, a problematic aspect is the presence of an event horizon, which in the
Schwarzschild black hole solution acts as a one-way membrane, permitting future-
directed null or timelike curves to cross only from the exterior to the interior region.
It acts as a boundary of all events which, in principle, may be observed by an exterior
observer. It is believed that the gravitational collapse of a compact body results in
a singularity hidden beyond an event horizon. If the singularity were visible to the
exterior region, one would have a naked singularity, which would open the realm
for wild speculation. This led to Penrose’s cosmic censorship conjecture [7], which
stipulates that all physically reasonable spacetimes are globally hyperbolic, forbid-
ding the existence of naked singularities, and only allowing singularities to be hidden
behind event horizons. The cosmic censorship conjecture has been an active area
of research and the source of considerable controversy. For the interior black hole
solution, a remarkable change occurs in the nature of spacetime, namely, the exter-
nal spatial radial and temporal coordinates exchange their character to temporal and
spatial coordinates, respectively. Thus, the interior solution represents a non-static
spacetime, as the metric coefficients are now time-dependent. This also implies that
a singularity occurs at a spacelike hypersurface, t = 0. Thus, no observer, interior or
exterior to the Schwarzschild radius, will be able to observe the formation, or for that
matter, the physical effects of the singularity [8]. These aspects show the existence of
inconsistencies and a certain ambiguity inherent in the Schwarzschild solution.

Still relatively to the issue of the black hole event horizon, a widespread miscon-
ception in the literature is that a test particle approaches the Schwarzschild radius at
the speed of light for all observers, and not as a limiting process for a static observer
located at the event horizon given by the null hypersurface r → 2M , where M is the
black hole mass. We shall use geometrized units, i.e., G = c = 1, for notational con-
venience, throughout this paper. If one accepts that a particle has the speed of light
with respect to a static observer, at r = 2M , then using the local special relativity
velocity composition law, the observer concludes that the particle has the speed of
light with respect to all observers, which is another way of saying that in the frame
of a photon all particles have speed v = 1. Of course, the frame of the photon is not
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a physical frame. Indeed, it should be emphasized that an observer cannot remain at
rest at r = 2M , as it implies an infinite acceleration to do so. Another erroneous ex-
trapolation of v → 1 at r = 2M , is that timelike particles attain velocities superior to
the speed of light in the black hole region 0 < r < 2M , and thus justifying the exis-
tence of tachyons, or for that matter of particles with velocities superior to the speed
of light in the framework of general relativity [9, 10]. All things considered, it should
be stressed once again that one can only use static observers in the spacetime region
characterized by r > 2M . And it was shown that the test particle does indeed cross
the event horizon with a velocity less than the speed of light [11, 12] with respect to
an appropriate physical observer. An exact general expression was further deduced,
in terms of the constants of motion of both a test particle and an observer moving
along radially infalling geodesics [13], given by

v2
∣
∣
r=2M

= 1 − 4E2
1E2

2

(E2
1 + E2

2)2
, (1)

where E1 and E2 are the constants of motion for the test particle and the observer,
respectively. This expression shows that the value of the velocity at r = 2M is indeed
less than 1, unless E1 or E2 are zero or infinite (see [13] for details, and [14, 15] for
further discussions).

Relatively to spacetime singularities, a key aspect is whether they are a disaster
for the theory, as they imply the breakdown of predictability. Various definitions of
singularities can be encountered in the literature, ranging from specific invariants,
constructed from the curvature tensor and its covariant derivatives, becoming infi-
nite, to the notion of geodesic incompleteness. Accordingly, one encounters several
attitudes to spacetime singularities [16]: Firstly, singularities are mere artifacts of
unrealistic and idealized models where infinities occur. Secondly, general relativity
entails singularities, according to the Penrose–Hawking theorems in the context of
geodesic incompleteness, and fails to accurately describe nature. Thirdly, one may
have a more optimistic viewpoint, as expressed by Misner, who views the existence
of singularities, “not as proof of our ignorance, but as a source from which we can
derive much valuable understanding of cosmology” [17].

Much of the skepticism related to the concepts of event horizons and spacetime
singularities, outlined above, and others such as the information paradox, has in-
spired new and fascinating ideas [18–28], namely by replacing the interior solution,
and thus, doing away with the problems related to these issues. In this context, it
is interesting to note the emergence of a new picture for an alternative final state
of gravitational collapse, where an interior compact object is matched to an exterior
Schwarzschild vacuum spacetime, at or near where the event horizon is expected to
form. These alternative models do not possess a singularity at the origin and have
no event horizon, as its rigid surface is located at a radius slightly greater than the
Schwarzschild radius. In particular, the gravastar (gravitational vacuum star) picture,
proposed by Mazur and Mottola [18–20], has an effective phase transition at/near
where the event horizon is expected to form, and the interior is replaced by a de Sitter
condensate. It has also been argued that there is no way of distinguishing a Schwarz-
schild black hole from a gravastar from observational data [29]. However, a realistic
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model for the gravitational collapse leading to compact interior objects is still lack-
ing. We also emphasize that, although interesting in themselves, the solutions that do
away with the interior singularity and the event horizon [18–28] sweep the inherent
conceptual difficulties of black holes under the rug, and that the interior structure of
realistic black holes has not been satisfactorily determined, being still open to con-
siderable debate.

In this work, we shall review and analyze the interior Schwarzschild solution in
some detail. In the literature, the interior geometry is considered as a continuity of
the exterior geometry. Therefore, for instance, infalling test particles are considered
ending up at a central singularity located at r = 0. However, the latter singularity is
a spacelike hypersurface, and the test particles are not directed towards a privileged
point, but directed along a temporal direction, in order to not violate causality. Thus,
if one looks at the interior geometry as a continuation of the exterior static solution,
one comes across some extremely interesting conceptual difficulties, that question the
very concept of a black hole. In this work we shall address some of these difficulties.
We shall start by obtaining the metric for the interior region without inferring directly
to the traditional Schwarzschild solution. With this geometry at hand, one may an-
alyze this interior region, without the prejudices inherited from the exterior region.
However, we emphasize that we shall compare both regions where it is convenient
to do so. We find new interesting features and peculiarities not encountered in the
literature, and show that this scenario can be interpreted as a cosmological solution.

This paper is outlined in the following manner: Firstly, in Sect. 2, we deduce the
interior metric by considering time-dependent metric fields, paying close attention
to several cosmological interpretations of this solution. We also address some of the
difficulties associated to spacetimes singularities, and argue that it is perhaps possible
for an observer to know if he is inside or outside the Schwarzschild radius, by exam-
ining an invariant of a covariant derivative of the curvature tensor. Secondly, in Sects.
3 and 4, we deduce the conserved quantities of null and timelike geodesics in some
detail, discussing several particular cases. Thirdly, in Sects. 5 and 6, we analyze the
Eddington–Finkelstein and Kruskal coordinates directly from the interior solution.
Finally, we conclude in Sect. 7.

2 Interior Spacetime

2.1 Spacetime Metric

We shall be interested in the spacetime metric given by

ds2 = −B(z, t) dt2 + A(z, t)dz2 + F(z, t) d�2, (2)

where d�2 = dθ2 +sin2 θ dφ2 and (t, z, θ,φ) are the spacetime coordinates. Assume
that F(z, t) = F(t), so that the line element with t = const and z = const describes
a 2-sphere with an area given by A = 4πF(t). In particular, we shall consider the
specific case of F(t) = t2.

To set the nomenclature, note that the mathematical analysis and the physical in-
terpretation will be simplified using a set of orthonormal basis vectors. These may
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be interpreted as the proper reference frame of a set of observers who remain at rest
in the coordinate system (t, z, θ,φ), with (z, θ,φ) fixed. Denote the basis vectors in
the coordinate system as et , ez, eθ , and eφ . Then, using the following transformation,

eα̂ = �
β

α̂
eβ , with

(�
β

α̂
) =

⎡

⎢
⎣

B−1/2 0 0 0
0 A−1/2 0 0
0 0 t−1 0
0 0 0 (t sin θ)−1

⎤

⎥
⎦ , (3)

one finds

⎧

⎪⎪⎨

⎪⎪⎩

et̂ = B−1/2et ,

eẑ = A−1/2ez,

e
θ̂

= t−1eθ ,

e
φ̂

= (t sin θ)−1eφ.

(4)

In this basis the metric components assume their Minkowskian form, g
α̂β̂

= η
α̂β̂

=
diag(−1,1,1,1).

The Einstein field equation, in an orthonormal reference frame, is given by

Gμ̂ν̂ = 8π Tμ̂ν̂ , (5)

where Tμ̂ν̂ is the stress-energy tensor and Gμ̂ν̂ is the Einstein tensor, given by
Gμ̂ν̂ = Rμ̂ν̂ − 1

2gμ̂ν̂R. Rμ̂ν̂ is the Ricci tensor, which is defined as a contraction of the

Riemann (or curvature) tensor, Rμ̂ν̂ = Rα̂
μ̂α̂ν̂

, and R is the scalar curvature defined as

a contraction of the Ricci tensor, R = Rα̂
α̂ .

The Einstein tensor, given in the orthonormal reference frame, Gμ̂ν̂ , yields for the
metric (2) the following non-zero components

Gt̂t̂ = Ȧ

ABt
+ 1

t2
+ 1

Bt2
, (6)

Gẑẑ = Ḃ

tB2
− 1

t2
− 1

Bt2
, (7)

Gẑt̂ = B ′

tB
√

AB
, (8)

G
θ̂θ̂

= − 1

2AB

[

Ȧ

t
− AḂ

Bt
+ Ä − B ′′ − Ȧ2

2A
+ A′B ′

2A
+ (B ′)2

2B
− ȦḂ

2B

]

, (9)

G
φ̂φ̂

= G
θ̂θ̂

, (10)

where a prime denotes a derivative with respect to the coordinate z, and the over-dot
a derivative with respect to the temporal coordinate, t .
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We shall consider a vacuum solution, i.e., Gμ̂ν̂ = 0. From the addition of (6)
and (7), we verify

Gt̂t̂ + Gẑẑ = 1

tB

(
Ḃ

B
+ Ȧ

A

)

= 0, (11)

so that the solution AB = C, with C = C(z) is obtained. It is possible to absorb
the function C(z), defining a new spatial coordinate z̄ = √

C z, so that without a
significant loss of generality one may set C = 1. One may conclude from this analysis
that A = 1/B .

From (8),

Gẑt̂ = B ′

tB
√

AB
= 0, (12)

we verify B ′ = 0, so that B = B(t), implying A = A(t). Note that B = B(t) is related
to the proper time dτ 2 = B(t) dt2, so that one may impose that B(t) > 0.

Now, substituting the relationship A = 1/B into (6), one finally deduces that

A(t) = B−1(t) = C1

t
− 1, (13)

where C1 is a constant of integration with time dimension. From the condition
B(t) > 0, and consequently A(t) > 0, this solution is only valid for t < C1.

Defining the constant of integration as C1 = 2ξ the metric (2) finally takes the
form

ds2 = −
(

2ξ

t
− 1

)−1

dt2 +
(

2ξ

t
− 1

)

dz2 + t2 (dθ2 + sin2 θ dφ2). (14)

The constant ξ may be determined from a direct confrontation with the exterior
Schwarzschild solution, and is given by ξ = M , where M is the black hole mass.
It may take the physical significance of a characteristic time for the existence of
universes in the interior Schwarzschild solution, as may be inferred from the cosmo-
logical interpretation of the interior metric, given by (2), which we consider in the
next subsection.

2.2 Cosmological Interpretation

This interior solution illustrates a particularly strange, yet physically meaningful pic-
ture of the universe within the event horizon. Thus, we shall consider some interesting
astrophysical and cosmological interpretations of this solution. A quick glance at the
metric (14) is enough to convince one that this also corresponds to an anisotropic
and homogeneous cosmological solution. In fact, considering the Kantowski–Sachs
[30, 31] solution given by

ds2 = −dt̄ 2 + A2(t̄ ) dz2 + C2(t̄ ) (dθ2 + sin2 θ dφ2), (15)
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where A(t̄ ) and C(t̄ ) are the scale factors of the geometry, one verifies that both
metrics are identical, by taking into account the following transformation

dt̄ 2 =
(

2ξ

t
− 1

)−1

dt2. (16)

An alternative approach would be to consider a time-dependent parameter ξ = ξ(t)

[32, 33], so that one could generalize metric (14) to

ds2 = −
[

2ξ(t)

t
− 1

]−1

dt2 +
[

2ξ(t)

t
− 1

]

dz2 + t2 (dθ2 + sin2 θ dφ2). (17)

The Einstein tensor given in an orthonormal reference frame has the following non-
zero components

Gt̂t̂ = 2ξ̇

t2
, (18)

Gẑẑ = −2ξ̇

t2
, (19)

G
θ̂θ̂

= G
φ̂φ̂

= − ξ̈

t
, (20)

where the over-dot denotes a derivative with respect to the time coordinate t , as be-
fore. Note that this solution implies ρ = −pz, where ρ and pz are the energy density
and the pressure along the z-direction, much in the spirit of [21–26]. Note that the
geometry (17) where ξ is time-dependent is not a solution of the vacuum Einstein
equations. In addition, even though ρ = −pz, they are time-dependent, i.e., the cor-
responding “cosmological constant” is not constant at all.

The above-mentioned case provides some very interesting cosmological solutions,
in rather different contexts, however, they shall be presented elsewhere [34]. Several
cosmological scenarios have also been proposed, in which a universe emerges from
the interior of a black hole (see, for instance, [35] and references therein). In the
present work, we shall only consider several interesting interpretations of universes
within the Schwarzschild radius, relatively to the metric (14).

Consider the interior solution as measured by an observer at rest relatively to the
space coordinates, i.e., dz = dθ = dφ = 0. In this case, from the metric (14), we have

dτ = ± dt√
2ξ/t − 1

. (21)

For the positive sign, we have the solution

τ = −√

t (2ξ − t) + ξ arctan

[
t − ξ√

t (2ξ − t)

]

+ πξ

2
, (22)

where the constant of integration has been chosen to provide τ = 0 for t = 0. Note
that as t = 2ξ , we have τ = ξπ , so that as coordinate time increases, the proper time
as measured by observers at rest also increase.
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Fig. 1 Plot of the proper time
for observers at rest relatively to
the (z,φ, θ) coordinate system.
The evolution of a universe
begins at t = 0, and proper time
τ = 0. As coordinate time flows
from t = 0 to t = 2ξ , proper
time runs from τ = 0 to τ = πξ .
This corresponds to the positive
sign solution of (22). Now,
allowing for the time coordinate
to flow backwards from t = 2ξ

to t = 0, proper time as
measured by observers at rest,
inexorably runs forward from
τ = πξ to τ = 2πξ . This
corresponds to the negative sign
solution of (23). See the text for
details

The evolution of this universe may be further explored [36] by considering the
negative sign of (21), which yields the following solution

τ = √

t (2ξ − t) − ξ arctan

[
t − ξ√

t (2ξ − t)

]

+ 3πξ

2
. (23)

The constant of integration has been chosen to provide τ = ξπ for t = 2ξ . For this
case the coordinate time decreases from t = 2ξ to t = 0, however, proper time in-
creases from τ = πξ to τ = 2πξ . This behavior is represented in Fig. 1.

Taking into account the metric (14), we verify that it possesses rotational invari-
ance, as the spatial surfaces corresponding to z = const, represent a 2-sphere with an
area given by A = 4πt2. The proper distance between two simultaneous events along
a determined spatial direction, for instance dφ = 0 and θ = π/2, is given by

Dp =
∫ z2

z1

√

2ξ

t
− 1 dz =

√

2ξ

t
− 1 �z. (24)

Note that a singularity occurs for t = 0, as can also be verified from the curvature
tensor. The proper distance between two particles at rest separated by a constant
�z, decreases along the z-direction as coordinate time flows from t = 0 to t = 2ξ ,
and increases as coordinate time flows backwards from t = 2ξ to t = 0. Despite the
fact that one may not talk about an asymptotic limit, for the interior solution, it is
interesting to note that the spacetime assumes an instantaneous Minkowski form, for
t = ξ , although the curvature does not become zero.

The proper distance between two simultaneous events along a spatial trajectory
with dz = 0 and θ = π/2, is given by

Dp =
∫ φ2

φ1

t dφ = t �φ, (25)
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which increases as t varies from t = 0 to t = 2ξ , and decreases when the temporal
coordinate runs backwards from t = 2ξ to t = 0.

Therefore, one may conclude by assuming the evolution of a universe beginning
at t = 0, where a singularity occurs along the z-direction, however, with no extension
along the angular direction, φ. As coordinate time flows from t = 0 to t = 2ξ , ob-
servers at rest move together, i.e., their proper distance decreases to zero, and move
apart along the angular coordinate attaining a maximum at t = 2ξ . Now, allowing
for the coordinate to flow backwards from t = 2ξ to t = 0, proper time as measured
by observers, at rest relatively to the (z,φ, θ) coordinate system, inexorably runs
forward from τ = πξ to τ = 2πξ . For this case, observers move apart along the
z-direction and collapse along the angular coordinate.

In this example, the difference of choosing an interior observer, without the preju-
dices inherited from the exterior geometry, is striking. While for the exterior observer,
infalling particles tend to a central singularity, from the interior point of view, the
proper distance along the z-direction increases, showing the existence of a cigar-like
singularity. We emphasize that the latter occurs along a spacelike hypersurface. An-
other difference worth mentioning is that the exterior observer considers a spherically
symmetric geometry, while the interior observer may consider the geometry plane, as
points for different φ are parallel to one another (see [36] for details regarding this
issue).

2.3 Singularities

The Schwarzschild solution has played a fundamental role in conceptual discussions
of general relativity, in particular, regarding spacetime singularities, as mentioned in
the Introduction. A key aspect of singularities in general relativity is whether they are
a disaster for the theory, as it implies the breakdown of predictability. Attitudes in the
literature range from [16]: singularities are mere artifacts of unrealistic and idealized
models; general relativity entails singularities, but fails to accurately describe nature;
and one may view the existence of singularities “not as proof of our ignorance, but
as a source from which we can derive much valuable understanding of cosmology”,
quoting Misner in the latter attitude [17].

A way of detecting singularities is to find where the energy density or the space-
time curvature become infinite and the usual description of the spacetime breaks
down. However, to be sure that there is an essential singularity which cannot be
transformed away by a coordinate transformation, invariants are constructed from the
curvature tensor, such as R, RμνR

μν , RμναβRμναβ , and from certain covariant deriv-
atives of the curvature tensor. For instance, in the Schwarzschild spacetime there is an
essential curvature singularity at r = 0 in the sense that along any non-spacelike tra-
jectory falling into the singularity, as r → 0, the so-called Kretschman scalar tends to
infinity, i.e., K = RμναβRμναβ → ∞, as shall be shown below. In this case, however,
all future directed non-spacelike geodesics which enter the event horizon at r = 2M

must fall into this curvature singularity within a finite value of the affine parameter.
So, all such curves are future geodesically incomplete. For the black hole region,
given by the metric (14), the scalar Kretschmann polynomial, K , is given by

RμναβRμναβ = 48ξ2

t6
, (26)
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showing that a curvature singularity occurs at t = 0.
It is remarkable that a change of sign occurs in the following scalar [37], as an

observer traverses the event horizon

Rμναβ;γ Rμναβ;γ = −720
(2ξ − t)ξ2

t9
. (27)

Note that the invariant is zero on the horizon t = 2ξ . It is perhaps possible that this
invariant is devoid of a fundamental significance. However, it is generally known
that using the curvature tensor and some of its covariant derivatives, the analysis
gives a complete description of the geometry, and are directly measurable. Since these
quantities are coordinate invariant, the problems associated with a specific choice of
the coordinate system vanish. This argument may be used in favor of separating the
interior from the exterior region.

2.4 Tidal Forces

The tidal acceleration felt by an observer at rest is given by

�aμ̂ = −R
μ̂

ν̂α̂β̂
U ν̂ηα̂U β̂, (28)

where Uμ̂ = δ
μ̂

0̂
is the observer’s four velocity and ηα̂ is the separation between two

arbitrary parts of his body. Note that ηα̂ is purely spatial in the observer’s reference

frame, as Uμ̂ημ̂ = 0, implying ηt̂ = 0. R
μ̂

ν̂α̂β̂
is the Riemann tensor, given in the

orthonormal reference frame, and has the following non-zero components

R
ẑθ̂ ẑθ̂

= R
ẑφ̂ẑφ̂

= − ξ

t3
, (29)

Rẑt̂ ẑt̂ = −R
θ̂φ̂θ̂ φ̂

= −2ξ

t3
, (30)

R
θ̂t̂ θ̂ t̂

= R
φ̂t̂φ̂t̂

= ξ

t3
. (31)

Taking into account the antisymmetric nature of R
μ̂

ν̂α̂β̂
in its first two indices, we

verify that �aμ̂ is purely spatial with the components

�aî = −Rî
t̂ ĵ t̂

ηĵ = −R
ît̂ ĵ t̂

ηĵ . (32)

Finally, using the components of the Riemann tensor, the tidal acceleration has the
following components

�aẑ = 2ξ

t3
ηẑ, (33)

�aθ̂ = − ξ

t3
ηθ̂ , (34)

�aφ̂ = − ξ

t3
ηφ̂. (35)
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Note a stretching along the z-direction, and a contraction along the orthogonal direc-
tions. These stretchings and contractions are now time-dependent, contrary to their
counterparts in the exterior region, and as t → 0, the tidal forces diverge.

3 Conserved Quantities

Consider the Euler–Lagrange equations

d

dλ

(
∂L

∂ẋμ

)

− ∂L

∂xμ
= 0, (36)

where the over-dot here represents a derivative with respect to the affine parameter
defined along the geodesic, which has the physical interpretation of a proper time for
timelike geodesics. Consider the following Lagrangian

L(xμ, ẋμ) = 1

2
gμνẋ

μẋν . (37)

If the metric tensor does not depend on a determined coordinate, xμ, one obtains an
extremely important result. For this case, (36) reduces to

d

dλ

(
∂L

∂ẋμ

)

= 0. (38)

This implies that the quantity given by

pμ = ∂L

∂ẋμ
= gμν ẋν, (39)

is constant along any geodesic. Using the Lagrangian nomenclature, one denotes xμ

a cyclic coordinate, and pμ the respective conjugate momentum. The existence of
cyclic coordinates allows one to obtain integrals of the geodesic equation, and pro-
vides certain quantities that are conserved along the movement of the particle.

Applying the above analysis to the line element (14), one verifies that the metric
tensor is independent of the coordinates z and φ, so that the conserved quantities are
given by

Pφ = gφφ φ̇ = t2φ̇ = Q, (40)

Pz = gzz ż =
(

2ξ

t
− 1

)

ż. (41)

Q may be interpreted as the angular momentum per unit mass, and Pz possesses the
dimensions of a velocity. As Pz may take any real value, we shall consider it as a
mere conserved quantity, without any physical significance.

The line element (14) may be rewritten in terms of the constants defined above,
for the particular case of θ = π/2, in the following manner

ṫ2 = P 2
z +

(
Q2

t2
− k

) (
2ξ

t
− 1

)

, (42)
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where k = 0 is defined for null geodesics, and k = −1 for timelike geodesics.
For timelike geodesics, k = −1, the conserved quantities Pz and Q may also be

determined from the initial conditions. For this purpose it will prove useful to provide
an intrinsic definition of velocity, which we shall include next for self-completeness.

Consider the four-velocity, Uμ, tangent to the worldline of an observer, and a
four-dimensional spacetime, �, orthogonal to Uμ. Define the operator

hμ
ν = gμ

ν + UμUν, (43)

which has the property of projecting any four-vector on the tangent space of the
hypersurface, �, so that hμ

ν Uν = 0. Thus, one may express the metric tensor in the
following form

ds2 = gμν dxμ dxν

= − (

Uμ dxμ
)2 + hμν dxμ dxν

= −dτ 2∗ + dl2. (44)

The quantity dτ∗ = −Uμ dxμ is the projection of the displacement of a particle, dxμ,
along the velocity of the observer, so that the particle has a displacement of dl2 =
hμν dxμ dxν , along �. Thus, the velocity may then be defined as

V 2 =
(

dl

dτ∗

)2

= hμν dxμ dxν

(Uμ dxμ)2
. (45)

Now, consider that the observer is at rest in the xμ coordinates, so that his/her
four-velocity is given by Uμ = (Ut ,0,0,0), with Ut = (−gtt )

−1/2. Thus, we have

hμν = gμν − gμtgνt

gtt

, (46)

and

dτ 2∗ = − (gμt dt)2

gtt

, (47)

so that (45) may be finally written as

V 2 = (gμtgνt − gttgμν) dxμ dxν

(gμt dxμ)2
. (48)

This result is identical to the one obtained by Landau and Lifschitz [38].
Now, using the metric (14) and considering θ = π/2, (48) takes the form

V 2 = −gzz

gtt

(
dz

dt

)2

− gφφ

gtt

(
dφ

dt

)2

, (49)

and finally using (42), we have

P 2
z = gzz

(
V 2

1 − V 2
− Q2

t2

)

. (50)
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Fig. 2 Qualitative behavior of
the positive values of Pz in the
parameter space t and V , where
we have considered ξ = 1. See
the text for details

Considering the particular case of dθ = dφ = 0, i.e., of a test particle that moves
along the z-direction (50) takes the form

P 2
z =

(
2ξ

t
− 1

)(
V 2

1 − V 2

)

. (51)

The qualitative behavior for the positive values of Pz, in the parameter space of t and
V , is represented in Fig. 2. Note that Pz may take arbitrarily large values as V → 1
or as t → 0.

For a point particle with an initial velocity V0 < 1 and initial time t = T , then Pz is
given by P 2

z = (2ξ/T −1)V 2
0 /(1−V 2

0 ). Note that if the test particle is at rest, V0 = 0,
at an instant T �= 2ξ , then it will always remain at rest as Pz = 0. If the particle came
in from the exterior region, it possesses a conserved quantity E along its geodesic.
Despite the fact that after the crossing of the event horizon its character changes
into a constant with the dimensions of a velocity, its numerical value is conserved,
i.e., E = Pz. The constant may assume different positive values depending on its
initial conditions. However, as reflected by (41), Pz may assume negative values as
well, so that one may conclude that geodesic particles moving along a decreasing z

coordinate, and increasing t coordinate, (or for that matter, an increasing z coordinate
and decreasing t , taking into account the cosmological interpretation of Sect. 2.2)
cannot have come in from the exterior region.

Equation (50) may be rewritten as

Q2 = t2
(

V 2

1 − V 2
− P 2

z

gzz

)

. (52)

If θ = π/2 and dz = 0, then the constant reduces to

Q2 = t2
(

V 2

1 − V 2

)

. (53)

For a point particle with an initial velocity V0 < 1 and initial time t = T , then Q2 =
T 2V 2

0 /(1 − V 2
0 ). If the particle is initially at rest then Q = 0.
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4 Geodesics

An advantage of analyzing the interior region, not as a continuation of the exterior
region, but as a manifold on its own, is a verification of the great difference existing
between the geodesics of both regions. If one treats the interior solution as a cosmo-
logical solution, one may verify which type of universe one is dealing with, or which
geodesics are analogous with those existing in our universe.

Consider the geodesic equation given by

d2xμ

dλ2
+ �μ

αβ

dxα

dλ

dxβ

dλ
= 0, (54)

where λ is an affine parameter defined along the geodesic. It is a simple matter of
exercising some index gymnastics to verify the equivalence of the geodesic equation
and the Euler–Lagrange equations (36).

Now, the geodesic equation, (54), for the metric (14) may be written in the follow-
ing form

ẗ − ξ(2ξ/t − 1)

t2
ż2 + m

t2(2ξ/t − 1)
ṫ2 + t (2ξ/t − 1) θ̇2

+ t sin2 θ (2ξ/t − 1) φ̇2 = 0, (55)

z̈ − 2ξ

t2(2ξ/t − 1)
ż ṫ = 0, (56)

θ̈ + 2

t
ṫ θ̇ − sin θ cos θ φ̇2 = 0, (57)

φ̈ + 2

t
ṫ φ̇ − 2 cot θ θ̇ φ̇ = 0. (58)

Considering the particular case of θ = π/2, and using the conserved quantities,
the three primary integrals are given by

ż = Pz

2ξ/t − 1
, (59)

φ̇ = Q

t2
, (60)

ṫ2

2ξ/t − 1
−

(
2ξ

t
− 1

)

ż2 − t2 φ̇2 = k, (61)

which are identical to (40–42). (See [39] for an interesting analysis of radial geodesics
confined under the Schwarzschild horizon.) We shall next analyze null and timelike
geodesics in some detail, and finally summarize the main results in Tables 1 and 2,
respectively.
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4.1 Null Geodesics

Equation (42), for null geodesics, reduces to

P 2
z = ṫ2 −

(
Q2

t2

) (
2ξ

t
− 1

)

. (62)

Consider null geodesics along the z-direction, i.e., with dθ = dφ = 0, so that we
simply have

Pz = dt

dλ
, (63)

where λ is an affine parameter defined along the geodesic.
For this case, the line element reduces to

ds2 = −
(

2ξ

t
− 1

)−1

dt2 +
(

2ξ

t
− 1

)

dz2. (64)

Considering null geodesics, ds2 = 0, i.e., dt = ±(2ξ/t − 1) dz, we have as solution

z = ∓
[

t + 2ξ ln

(

1 − t

2ξ

)]

+ C, (65)

where C is a constant of integration. Equation (65) is represented in Fig. 3.
Note that traditionally the solution with dt < 0 corresponds to a black hole solu-

tion, either with an increasing or decreasing z coordinate, i.e., dz > 0 or dz < 0, re-
spectively. A white hole solution corresponds to dt > 0, either with dz > 0 or dz < 0.
We also emphasize the importance of analyzing the interior solution separately, as in
the literature the radial coordinate r (considered in the Schwarzschild exterior) is gen-
erally considered as a coordinate that measures distances, in the interior. It is usually
treated as a temporal coordinate to note that r decreases (increases) for an observer
in a black hole (white hole).

Fig. 3 Plot of null geodesics,
along the z-direction, i.e., with
dθ = dφ = 0. See the text for
details
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Table 1 Summary of the
equations of motion for null
geodesics, considering the
particular case of φ = π/2. See
the text for details

ṫ =
√

P 2
z + (Q2/t2)(2ξ/t − 1)

ż = (2ξ/t − 1)−1 Pz

φ̇ = Q/t2

dz = 0 ṫ =
√

(

Q2/t2
)

(2ξ/t − 1)

φ̇ = Q/t2

dφ = 0 ṫ = Pz

ż = (2ξ/t − 1)−1 Pz

It is also of interest to study the case of θ = π/2 and dz = 0. Note that these are not
circular orbits, as the z coordinate can no longer be considered as a radial coordinate.
Equation (41) provides Pz = 0, and thus (62) may be rewritten as

ṫ2 =
(

Q2

t2

)(
2ξ

t
− 1

)

. (66)

The line element, for this particular case takes the form

ds2 = −
(

2ξ

t
− 1

)−1

dt2 + t2 dφ2. (67)

The null geodesic, ds2 = 0, provides dφ/dt = ±1/
√

t (2ξ − t), which has the fol-
lowing solution

φ = arcsin

(
t

ξ
− 1

)

+ π

2
, (68)

or t = ξ [1 + sin(φ − π/2)]. One may also obtain the equivalent solution, given by

φ(t) = arctan

(
t − ξ√

t (2ξ − t)

)

+ π

2
. (69)

The constant of integration has been chosen to provide φ = 0 for t = 0. Note that for
t = 2ξ , then φ = π . For this case one verifies that a photon only traverses half-way
around this particular universe.

4.2 Timelike Geodesics

Equation (42), for timelike geodesics, takes the form

P 2
z = ṫ2 −

(
Q2

t2
+ 1

)(
2ξ

t
− 1

)

. (70)

From the conserved quantities one may determine various expressions relating the
time coordinate and the proper time. For instance, (70) may be expressed in the fol-
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lowing form

dτ = ±
[

P 2
z +

(
Q2

t2
+ 1

)(
2ξ

t
− 1

)]−1/2

dt. (71)

Substituting (50) in the above expression provides

dτ 2 = (1 − V 2)

(
2ξ

t
− 1

)−1

dt2. (72)

This is an expression valid for a generic trajectory, and one readily verifies that the
variation of proper time does not depend explicitly on the constants Pz and Q.

One may also deduce, from (41), a relationship between the variation of proper
time and the spatial coordinate, namely, �τ = (gzz/Pz)�z. Consider the specific
case of Pz = 1, so that �τ = gzz�z, and fixing �z, note that variations in proper
time tend to infinity as t → 0. This is another interesting example, as viewed from
the interior, in that the test particle does not attain the singularity in his proper time.

Taking into account the specific case of θ = π/2 and dφ = 0, which implies
Q = 0, along the direction of the z coordinate, we have

P 2
z =

(
dt

dτ

)2

−
(

2ξ

t
− 1

)

, (73)

from which we deduce

dτ

dt
= ±

[(
2ξ

t
− 1

)

+ P 2
z

]−1/2

. (74)

Taking into account the specific case of P 2
z > 1, (74) may be integrated to provide

the following proper time

τ(t) = ±(P 2
z − 1)−3/2

{

−
√

t (2ξ − t + P 2
z t)(P 2

z − 1)

+ ξ ln

[

ξ + t (P 2
z − 1)

√

P 2
z − 1

+
√

t (2ξ − t + P 2
z t)

]}

+ C, (75)

where C is a constant of integration. If P 2
z = 1, then the proper time is given by

τ(t) = ∓
√

2t

ξ

t

3
+ C. (76)

For the particular case of P 2
z < 1, (74) provides the following solution

τ(t) = ±(1 − P 2
z )−3/2

{

−
√

t (2ξ − t + P 2
z t)(1 − P 2

z )
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+ ξ arctan

[

(1 − P 2
z )t − ξ

√

t (2ξ − t + P 2
z t)(1 − P 2

z )

]}

+ C. (77)

Recall that the constant of motion may also be determined from the initial con-
ditions, so that substituting (51), with the initial conditions v0 and T , into (74), we
finally have

dτ =
[(

2ξ

T
− 1

)(
v2

0

1 − v2
0

)

+
(

2ξ

t
− 1

)]−1/2

dt. (78)

The line element for dθ = dφ = 0 is given by

ds2 = −
(

2ξ

t
− 1

)−1

dt2 +
(

2ξ

t
− 1

)

dz2, (79)

which, taking into account (41) and (73), takes the following form

(
dt

dz

)2

=
(

2ξ

t
− 1

)2 [

1 +
(

2ξ

t
− 1

)

/P 2
z

]

. (80)

In particular, for Pz = 1, the above equation may be integrated to yield the solution

z = ∓2(6ξ + t)

3

√
t

2ξ
± 4ξ arctanh

(√
t

2ξ

)

, (81)

It may be shown that this solution is qualitatively analogous to the plots of Fig. 3.
One of the most surprising results is that the trajectories of particles at rest are

geodesics, contrary to the exterior where particles at rest are necessarily accelerated.
As Pz is a conserved quantity, a particle at rest, z = const, will always remain at
rest. Despite the fact of the presence of strong gravitational fields in the interior of a
black hole, test geodesic particles at rest relatively to the coordinate system may exist,
which is due to the non-static character of the interior geometry. For an alternative
approach, consider dz = dθ = dφ = 0. In this case, from dτ = ±(2ξ/t − 1)−1/2 dt ,
we have the following solution

τ = ±√

t (2ξ − t) ∓ ξ arctan

[
t − ξ√

t (2ξ − t)

]

+ C. (82)

This solution was briefly considered in Sect. 2.2. The constant may be chosen by
considering that for t = 0 we have τ = 0. For the maximum coordinate time variation,
�t = 2ξ , the corresponding proper time variation is �τ = ξπ . This is precisely the
lifetime for the of existence of geodesic particles inside the black hole (white hole),
i.e., these test particles exist for a finite proper time, ξπ . One verifies that (82) differs
radically from its exterior counter-part. In the exterior region the proper time interval
is inferior to the coordinate time interval, and is interpreted as the time interval of an
observer located sufficiently far from the event horizon. A fundamental issue is that in
the exterior region, the time coordinate is physically meaningful, as it corresponds to
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Table 2 Summary of the
equations of motion for timelike
geodesics, considering the
particular case of φ = π/2. See
the text for details

ṫ =
√

P 2
z + (Q2/t2 + 1)(2ξ/t − 1)

ż = (2ξ/t − 1)−1 Pz

φ̇ = Q/t2

dz = 0 ṫ =
√

(Q2/t2 + 1)(2ξ/t − 1)

φ̇ = Q/t2

dφ = 0 ṫ =
√

P 2
z + (2ξ/t − 1)

ż = (2ξ/t − 1)−1 Pz

dz = 0 ṫ = √
(2ξ/t − 1)

dφ = 0

the proper time measured by observers at an asymptotically large value of the radial
coordinate, r . In the interior region dτ = dt is but a mere instantaneous coincidence.

For the particular case of timelike geodesic particles at rest relatively to the z

coordinate, with dz = 0 and θ = π/2, we have P 2
z = 0. As emphasized above, the

trajectory around the z-axis cannot be interpreted as a circular orbit. The proper time
for this trajectory is determined from the following expression

dτ 2 =
[(

Q2

t2
+ 1

)(
2ξ

t
− 1

)]−1

dt2. (83)

The velocity of a particle along this timelike geodesic, i.e., dz = 0 and θ = π/2,
as measured by an observer at rest, taking into account (48), is given by

V 2 = −gφφ

gtt

(
dφ

dt

)2

=
(

2ξ

t
− 1

)
Q2

t2 ṫ2
= Q2

t2 + Q2
. (84)

This expression may also be obtained from (53). Note that as t → 0, then V → 1.
At t = 2ξ , we verify that the particle attains a finite minimum value, given by V 2 =
Q2/(Q2 + 4ξ2).

For the particular case of dz = dφ = 0 and θ = π/2, we verify that the constants
of motion are zero, Pz = Q = 0, implying that the timelike geodesic particles re-
main at rest. An important conclusion is inferred from the conserved quantities for
particles at rest. As is well known, an incoming geodesic particle from the exterior,
has a conserved quantity E, which is interpreted as the energy per unit mass, along
its trajectory. However, this constant of motion in the interior of the event horizon
changes its physical significance, but its numerical value remains invariant. If Pz = 0
is verified, this is equivalent to state that the test particle entered from the exterior
with E = 0. Now, the energy per unit mass is defined as E = (1 − 2M/r)/(1 − v2

0),
so that E = 0 corresponds to r = 2M . This means that the particle started off from
the horizon, which is a null surface. Thus, for the particular case of Pz = 0, one may
conclude that a geodesic timelike particle at rest in the interior of the horizon cannot
have come in from the exterior region.
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5 Eddington–Finkelstein coordinates

The Eddington–Finkelstein transformation is traditionally considered a transforma-
tion that permits the analysis of trajectories from 0 < r < ∞. However, in a general
manner, the inversion of the character of the coordinates is not manifest. Therefore,
to manifest this difference, we shall treat the Eddington–Finkelstein transformations
directly from the interior metric (14).

For null geodesics along the z-direction, (65) provides the following solutions

z∓ = ∓
[

t + 2ξ ln

(

1 − t

2ξ

)]

+ C. (85)

The solution with the negative sign shows that z increases as dt < 0, and decreases
as dt > 0; from the solution with the positive sign, one may infer that z increases as
dt > 0, and decreases as dt < 0.

Consider now the following transformations

z′ = z− + 2ξ ln

(

1 − t

2ξ

)

	⇒ z′ = −t + C, (86)

z′′ = z+ − 2ξ ln

(

1 − t

2ξ

)

	⇒ z′′ = t + C. (87)

In the exterior region of the event horizon, solutions for dt < 0 are excluded, as
one admits that the temporal coordinate increases. In the interior region two distinct
cases need to be separated, namely, for dt < 0, which traditionally is denoted a black
hole, and dt > 0, a white hole.

Taking into account the definition z′, one may rewrite the metric (14) as

ds2 =
(

2ξ

t
− 1

)

dz′2 + 4ξ

t
dz′dt +

(
2ξ

t
+ 1

)

dt2 + t2 d�2, (88)

which is no longer singular at t = 2ξ .
Now metric (88) may be simplified by introducing a null coordinate, denoted the

advanced time parameter in analogy with the exterior solution

v′ = z′ + t = z− + 2ξ ln

(

1 − t

2ξ

)

+ t, (89)

so that the metric (14) takes the form

ds2 =
(

2ξ

t
− 1

)

dv′2 + 2dt dv′ + t2 d�2. (90)

This is the line element of Eddington–Finkelstein for the advanced time parameter,
which is regular at the instant t = 2ξ .

Analyzing the specific case of ds2 = dθ = dφ = 0, the metric (90) provides the
following solutions

dv′ = 0, or

(
2ξ

t
− 1

)

dv′ = −2dt. (91)
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Fig. 4 Eddington–Finkelstein
diagram for the advanced
temporal parameter. A black
hole solution corresponds to
dt < 0, and consequently
dz′ > 0; and analogously, a
white hole solution corresponds
to dt > 0 and dz′ < 0

Recalling that dv′ = dz′ + dt , the above cases with

dz′ = −dt, (92)

dt

dz′ = −2ξ − t

2ξ + t
, (93)

have the following solutions

z′ = −t + C, (94)

z′ = t + 4ξ ln

(

1 − t

2ξ

)

+ C. (95)

These are plotted in Fig. 4, for different values of the constant C. Note that both
solutions obey dz′/dt < 0. A black hole solution corresponds to dt < 0, and conse-
quently dz′ > 0; and analogously, a white hole solution corresponds to dt > 0 and
dz′ < 0.

Applying an analogous procedure for the retarded temporal parameter, w′′, con-
structed from z′′,

w′ = z′′ − t 	⇒ w′ = z+ − 2ξ ln

(

1 − t

2ξ

)

− t, (96)

and consequently

ds2 =
(

2ξ

t
− 1

)

dw′2 − 2dt dw′ + t2 d�2. (97)

As is manifest from the line elements (90) and (97), the metric coefficients are regular
at t = 2ξ .
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Fig. 5 Eddington–Finkelstein
diagram for the retarded
temporal parameter. A black
hole solution corresponds to
dt < 0, and consequently
dz′ < 0; and analogously,
a white hole solution
corresponds to dt > 0 and
dz′ > 0

For the case ds2 = dθ = dφ = 0, the metric (97) provides the following relation-
ships

dz′′ = dt, (98)

dt

dz′′ = 2ξ − t

2ξ + t
, (99)

with the respective solutions

z′′ = t + C, (100)

z′′ = −t − 4ξ ln

(

1 − t

2ξ

)

. (101)

These are plotted in Fig. 5, for different values of the constant C. Both solutions
obey dz′′/dt > 0, with dt < 0 and dz′′ < 0 corresponding to a black hole solution;
and dt > 0 and dz′′ > 0 to a white hole solution, respectively.

6 Kruskal Coordinates

Consider the difference obtained from (89) and (96), given by

v′ − w′ = 4ξ ln

(

1 − t

2ξ

)

+ 2t, (102)

from which one may obtain the following equalities

1 − t

2ξ
= exp

(
v′ − w′

4ξ

)

exp

(

− t

2ξ

)

, (103)

dt = −(dv′ − dw′)2ξ − t

2t
. (104)
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Substituting these expressions in (90), one obtains

ds2 =
(

2ξ

t
− 1

)

dw′dv′ + t2(dθ2 + sin2 θ dφ2). (105)

Now, introducing the Kruskal coordinates for the region t < 2ξ (r < 2M), i.e.,

w′′ = exp

(

−w′

4ξ

)

, (106)

v′′ = exp

(
v′

4ξ

)

. (107)

Substituting these expressions in (103), we finally have

w′′v′′ =
(

1 − t

2ξ

)

exp

(
t

2ξ

)

. (108)

Equations (106, 107) may be rewritten as

dw′ = −dw′′

w′′ 4ξ, (109)

dv′ = dv′′

v′′ 4ξ, (110)

which substituting into metric (105), we have the following

ds2 = −32ξ3

t
exp

(

− t

2ξ

)

dw′′dv′′ + t2(dθ2 + sin2 θ dφ2). (111)

It is still possible to introduce the following transformations

t∗ = 1

2
(v′′ + w′′), (112)

r∗ = 1

2
(v′′ − w′′), (113)

so that we have dt2∗ − dr2∗ = dv′′ dw′′. The line element finally assumes the form

ds2 = 32ξ3

t
exp

(

− t

2ξ

) (

−dt2∗ + dr2∗
)

+ t2 d�2. (114)

The new coordinates may be rewritten as

t∗ = 1

2

[

exp

(
v′

4ξ

)

+ exp

(

−w′

4ξ

)]

=
(

1 − t

2ξ

)1/2

exp

(
t

4ξ

)

cosh

(
z

4ξ

)

, (115)
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Fig. 6 Kruskal diagram for the
interior region of the
Schwarzschild spacetime. We
have added some details in the
exterior region for comparison.
See the text for details

r∗ = 1

2

[

exp

(
v′

4ξ

)

− exp

(

−w′

4ξ

)]

=
(

1 − t

2ξ

)1/2

exp

(
t

4ξ

)

sinh

(
z

4ξ

)

. (116)

These expressions may be written

t2∗ − r2∗ =
(

1 − t

2ξ

)

exp

(
t

2ξ

)

, (117)

which is the equation for a hyperbole, and may also be expressed as

r∗
t∗

= tanh

(
z

4ξ

)

, (118)

which represent straight lines with z = const. See Fig. 6.
The singularity at t = 0, written in terms of the new coordinates, is given by

t∗ = ±
√

r2∗ + 1. (119)

For r∗ = 0, we have t∗ = 1. For t = 2ξ , we have t∗ = ±r∗, i.e., tanh(z/4ξ) = ±1,
which implies z → ±∞. These relationships may be visualized in Fig. 6. We have
also added the exterior region, for comparison purposes (see, for instance, [40]).

With this analysis at hand, one may consider the following motion of a timelike
test particle, as viewed from an interior observer. The test particle starts its movement
at the event E1, arriving at the surface of t = 2ξ and z = −∞, at event E2. After an
excursion in the exterior region, the test particle re-enters into the interior region at
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Fig. 7 A hypothetical test
particle starts its movement at
the event E1, i.e., at t = 0, and
arrives at t = 2ξ and z = −∞, at
event E2. It re-enters into the
interior region at event E3,
corresponding to t = 2ξ and
z = +∞, ending up in the
spacelike singularity at t = 0, at
event E4. As viewed from an
interior observer the test particle
exits the interior region, at
t = 2ξ and z = −∞, to reappear
instantaneously at t = 2ξ , at the
positive side of the z-axis.
According to the point of view
of the interior observer, no time
has elapsed during the test
particle’s excursion in the
exterior region

event E3, corresponding to t = 2ξ and z = +∞, and finally ends up in the spacelike
singularity at t = 0, at event E4. Note an extremely curious feature of this movement,
as viewed from an interior observer. The test particle exits the interior region, at the
moment of complete contraction along the negative end of the z-direction, to reappear
instantaneously at t = 2ξ , at the positive side of the z-axis. According to the point of
view of the interior observer, no time has elapsed during the test particle’s excursion
in the exterior region. This analysis is analogous to the one outlined in [36]. Another
curious feature, relatively to the interior observer is also worth mentioning: All in-
falling null or timelike particles enter into the interior at different places z = ±∞, but
simultaneously at t = 2ξ .

7 Summary and Discussion

The Schwarzschild solution has played a fundamental conceptual role in general rela-
tivity, and beyond, for instance, regarding event horizons, spacetime singularities and
aspects of quantum field theory in curved spacetimes. In this work, we have provided
a brief pedagogical review and further analyzed the interior Schwarzschild solution.
Firstly, by deducing the interior metric by considering time-dependent metric fields,
we have analyze the interior region, without the prejudices inherited from the exterior
region. With this geometry at hand, we have payed close attention to several respec-
tive cosmological interpretations, and addressed some of the difficulties associated to
spacetimes singularities. Secondly, we have deduced the conserved quantities of null
and timelike geodesics, and discussed several particular cases in some detail. Finally,
we examined the Eddington–Finkelstein and Kruskal coordinates directly from the
interior solution.
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A black hole is believed to have formed from the gravitational collapse of a mas-
sive body. However, events occurring in the interior of the event horizon are not ob-
servable for an exterior observer, and one may argue that relatively to the latter, black
holes are not relevant physical objects [8]. Although the event horizon exists for exte-
rior observers, all events in the range r > 2M are accessible to the interior observers.
If one looks at the interior geometry as a continuation of the exterior static solution,
one comes across some extremely interesting conceptual difficulties, that question the
very concept of a black hole. For instance, while for the exterior observer, infalling
particles end up at a central singularity at r = 0, from the interior point of view, the
proper distance along the z-direction increases, showing the existence of a cigar-like
singularity. The latter singularity is a spacelike hypersurface, and the test particles
are not directed towards a privileged point, however, in order to not violate causality
they are directed along a temporal direction from t = 2ξ to t = 0. A curious behav-
ior relatively to an interior observer is also verified, as all infalling particles crossing
the event horizon, occur simultaneously at t = 2ξ . In this context, the Eddington–
Finkelstein and Kruskal transformations do indeed solve the coordinate singularity
at r = 2M , but do not solve the problems associated with the inversion of the r and
t coordinates. Assuming that r is a temporal coordinate for r < 2M , also signifies
giving it a determined direction and duration, i.e., the black hole, or for that matter
a white hole, possesses a finite coordinate temporal duration. However, the exterior
geometry is static, and once created does not disappear.

An interesting feature relatively to the interior geometry is the issue of proper
distances. The proper distance between two particles at rest separated by a constant
�z, decreases along the z-direction as coordinate time flows from t = 0 to t = 2ξ ,
and increases as coordinate time flows backwards from t = 2ξ to t = 0. In counter-
part, the proper distance between two simultaneous events along a spatial trajectory
with dz = 0 and θ = π/2, increases as t varies from t = 0 to t = 2ξ , and decreases
when the temporal coordinate runs backwards from t = 2ξ to t = 0. Another surpris-
ing result, considering the interior point of view, is that the trajectories of particles
at rest are geodesics, contrary to the exterior where particles at rest are necessarily
accelerated. This fact is due to the non-static character of the interior geometry.

In this work, we have addressed some conceptual difficulties related to the notion
of black holes. The solutions that do away with the interior singularity and the event
horizon [18–28], although interesting in themselves, sweep the inherent conceptual
difficulties of black holes under the rug. In concluding, we note that the interior struc-
ture of realistic black holes have not been satisfactorily determined, and are still open
to considerable debate.
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